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Abstract We adopt an operational approach to quantum mechanics in which a physical
system is defined by the mathematical structure of its set of states and properties. We present
a model in which the maximal change of state of the system due to interaction with the
measurement context is controlled by a parameter which corresponds with the number N of
possible outcomes in an experiment. In the case N = 2 the system reduces to a model for
the spin measurements on a quantum spin-1/2 particle. In the limit N → ∞ the system is
classical, i.e. the experiments are deterministic and its set of properties is a Boolean lattice.
For intermediate situations the change of state due to measurement is neither ‘maximal’
(i.e. quantum) nor ‘zero’ (i.e. classical). We show that two of the axioms used in Piron’s
representation theorem for quantum mechanics are violated, namely the covering law and
weak modularity. Next, we discuss a modified version of the model for which it is even
impossible to define an orthocomplementation on the set of properties. Another interesting
feature for the intermediate situations of this model is that the probability of a state transition
in general not only depends on the two states involved, but also on the measurement context
which induces the state transition.

Keywords Foundations of quantum mechanics · Operational approach ·
Orthocomplementation

1 Introduction

In this paper we adopt an operational approach to the foundations of quantum mechanics in
which a physical system is determined by the mathematical structure of its set of states and
properties, and the relation between these two sets. In the State–Property–System formal-
ism (SPS) entities are assumed at each instant of time to be in a definite state such that some
properties are actual in a specific state, while other properties are only potential, i.e. not
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actual. Only by a change of state (induced either by measurement interaction or by free
evolution) can potential properties become actual, i.e. are they ‘realized’ by evolution of
the (state of the) system. The SPS-formalism fits in a long history of operational approach
to quantum mechanics, known as the Geneva-Brussels approach [1–3, 13, 17–19]. How-
ever, in the SPS formalism states are considered as primary concepts, and although each
state can be represented in the set of properties by its property state, this state identification
only follows if two conditions hold on the set of states (equivalent to separation axioms
T0 and T1 in topology) [6]. If a specific set of quantum axioms (from Piron’s Representa-
tion Theorem [18, 19], together with Solèr’s additional condition [20]) is satisfied by the
set of properties, it fits in a quantum mechanical representation in Hilbert space. In 1981
it was shown that a compound system consisting of two separated quantum systems does
not fit structurally within the mathematical framework of standard quantum mechanics [1].
This follows from the fact that the lattice of properties of such a compound system does not
obey all axioms of standard quantum mechanics, suggesting that more general mathematical
structures than Hilbert spaces need to be explored in order to represent such systems. More
specifically, the axioms of weak modularity and covering law are violated.

Following this operational approach, it is possible to consider a macroscopic sphere
model which ‘behaves quantum-like’, i.e. its SPS is the same SPS as for a quantum spin-1/2
particle and its spin properties [4]. In this model, quantum probability can be explained as
due to a lack of knowledge on the measurement interaction. In next step, one constructs
sphere models in which a parameter controls this lack of knowledge, allowing for a con-
tinuous transition from quantum to classical systems. For the intermediate situations of the
model, the axioms of weak modularity and covering law are violated [7]. Although this
model is deterministic in its classical limit (no lack of knowledge on the measurement inter-
action), the change of state due to the measurement process is in general non-zero. In this
paper we present a model in which the maximal change of state of the system due to interac-
tion with the measurement context is controlled by a parameter which corresponds with the
number N of possible outcomes in an experiment. In the case N = 2 the system reduces to
the quantum sphere model. In the limit N → ∞ the system is ‘genuinely’ classical, i.e. the
experiments are deterministic, the set of properties is a Boolean lattice and the change of
state due to measurement is zero (i.e. negligible). For intermediate situations the change
of state due to measurement is neither ‘maximal’ (i.e. quantum) nor ‘zero’ (i.e. classical)
and we show that the two ‘suspicious’ axioms of weak modularity and the covering law are
violated. Next, we discuss a modified version of the model for which even the orthocomple-
mentation on the set of properties becomes problematic.

2 An Operational Approach to Quantum Mechanics

We adopt an operational approach to quantum mechanics in which a physical entity is de-
scribed by its set of states, its set of properties and a relation of ‘actuality’ between these
two sets which expresses which properties are actual when the system is in a specific state,
as follows [9]. First, we consider that at any moment the entity S is in a (known or un-
known to the observer) state p ∈ �. Also, S has a set of properties L, defined by the set
of available experiments which can be performed on S. A property a is either ‘actual’ or
‘potential’ for the entity S, which means that if the property a is actual in the state p, then
each time the corresponding experiment is performed, the positive outcome is found with
certainty. Between the set of states and (power)set of properties is a relation ξ : � → P(L)

of ‘actuality’ that maps each state p ∈ � onto the set ξ(p) of those properties that are ac-
tual in this state. Dually, one can consider the Cartan map κ : L → P(�), which maps a
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property a ∈ L onto the set of states κ(a) that make this property actual. Depending on the
nature of the entity S, one obtains a different structure on the set of states �, the set of
properties L and the relation between these two sets. Hence, if we are only concerned with
the structural behavior of the entity, we can focus on the triple (�, L, ξ). More abstractly,
even without an underlying physical entity S, we can consider any two sets � and L and a
function ξ : � → P(L) : p → ξ(p) and study the emerging structure. The triple (�, L, ξ)

is called a State–Property–System (SPS). The SPS-formalism is a further elaboration of the
original Geneva-Brussels approach, [1–3, 13, 17–19] in which the set of experiments de-
fines the set of properties by yes–no tests. Each physical property is identified by its set of
eigenstates, i.e. if the system S is in an eigenstate of this property, the measurement yields
the corresponding outcome with certainty.

If one considers the SPS of a quantum entity, one observes that certain ‘quantum ax-
ioms’ hold. Conversely, one can start from a general SPS, and by imposing a suitable set of
axioms (the ‘quantum axioms’ from Piron’s Representation Theorem [18, 19], with Solèr’s
additional condition [20]) the structure on the set of properties is such that it fits into a quan-
tum mechanical representation. Namely, the lattice of properties is isomorphic with a family
of lattices (with superselection rules) of closed subspaces in a Hilbert space over the field of
reals, complex numbers or the division ring of quaternions. Let us briefly recall the axioms
used in (generalized) Piron’s representation theorem and more particularly at what stage the
orthocomplementation enters the discussion.

Consider a SPS (�, L, ξ). For properties a, b ∈ L we can define an implication relation:
a < b ⇔ κ(a) ⊂ κ(b). Similarly, for states p,q ∈ � we introduce p < q ⇔ ξ(q) ⊂ ξ(p). It
can be shown that (�,≤) and (L,≤) are pre-ordered sets.

Axiom 2.1 (Property determination) Consider a SPS (�, L, ξ). The axiom of property de-
termination is satisfied iff for a, b ∈ L : κ(a) = κ(b) ⇒ a = b.

If the axiom of property determination is satisfied, then ≤ is a partial order relation on L.

Axiom 2.2 (Property completeness) The axiom of property completeness is satisfied iff ∃
generating subset T ⊆ L such that ∀(ai)i ⊆ T ,∃a ∈ L : κ(a) = ⋂

i κ(ai) (*) and ∀a ∈ L :
∃(ai)i ⊆ T such that (*) is satisfied.

The property a is called the meet of (ai)i , denoted as a = ∧
i ai . Consider a State–

Property–System SPS (�, L, ξ) for which axioms of property determination and prop-
erty completeness are satisfied. Then (L,<,∧,∨) is a complete lattice. Therefore, alter-
natively, the combination of axioms of property determination and property completeness
can be replaced by the single axiom of completeness of L. For a state p ∈ � the property
state is defined as the property s(p) = ∧

a∈ξ(p) a. The element b ∈ L is called an atom iff
∀x ∈ L : 0 < x < b ⇒ x = 0 or x = b, i.e. b covers 0.

Axiom 2.3 (Atomicity) Consider a SPS (�, L, ξ) for which axioms of property determina-
tion and completeness are satisfied. The axiom of atomicity is satisfied iff ∀p ∈ � : s(p) is
an atom of L and ∀a ∈ L : a = ∨

a∈ξ(p) s(p).

Axiom 2.4 (Orthocomplementation) The axiom of orthocomplementation is satisfied iff
there exists an orthocomplementation relation ⊥ : L→L such that for a, b∈L: (i) (a⊥)⊥=a,
(ii) a ≤ b ⇒ b⊥ ≤ a⊥, (iii) a ∧ a⊥ = 0 and a ∨ a⊥ = 1.
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Consider a SPS (�, L, ξ) for which axioms of property determination, property com-
pleteness and orthocomplementation are satisfied. Then (L,≤,∧,∨) is a complete ortho-
complemented lattice.

Axiom 2.5 (Covering law) The covering law is satisfied iff for a, b ∈ L and p ∈ � : a ∧
s(p) = 0 : a < b < a ∨ s(p) ⇒ b = a or b = a ∨ s(p).

Axiom 2.6 (Weak modularity) The lattice L is weakly modular iff ∀a, b ∈ L : a < b ⇒
(b ∧ a⊥) ∨ a = b.

Axiom 2.7 (Plane transitivity) An orthocomplemented lattice L is plane transitive iff for
atoms s, t ∈ L, there are two distinct atoms s1 �= s2 and a symmetry f such that f |[0,s1∨s2] is
the identity and f (s) = t .

The SPS (�, L, ξ) of quantum and classical mechanical entities is such that L is a com-
plete orthocomplemented lattice that satisfies the covering law, and is weakly modular and
plane transitive. This can be checked straightforward from the Hilbert space representation
of L by the lattice of closed subspaces in Hilbert space for quantum systems, or the phase
space representation for classical mechanical entities. The reverse statement is less trivial
to show. In fact, the (re)formulation of a decisive set of axioms which forces a quantum
structure on the set of properties (i.e. an isomorphism with the closed subspaces in a com-
plex Hilbert space) has been at the heart of on-going scientific research over the last decades
[18–20]. One can adopt an alternative to Solèr’s axiom, namely the operational defined
axiom of (6) plane transitivity [8], which, together with the previous five axioms, (1) com-
pleteness, (2) atomicity, (3) orthocomplementation, (4) covering law, (5) weak modularity,
yields a full axiomatization of standard quantum mechanics:

Theorem 2.8 (Representation theorem of Piron–Solèr) Consider a SPS (�, L, ξ) such that
L contains at least 4 atoms and is a complete orthocomplemented atomistic lattice that
satisfies the covering law, is weakly modular and plane transitive. Then L is isomorphic
with a family of lattices (with superselection rules) of closed subspaces in a Hilbert space
over the field of reals, complex numbers or the division ring of quaternions.

3 Closure Structures

To tackle the problem of orthocomplementation on the set of properties, we represent the set
of properties via an eigenclosure operation on the set of states. Introducing an orthogonality
relation on the set of states, one can define an orthoclosure structure which is orthocom-
plemented under this orthogonality relation. Hence if these two closure structures coincide,
one automatically obtains that it is possible to define an orthocomplementation on the set of
properties. Let us start by showing how we can construct the SPS of a (physical) system via
a closure operation on the set of states, defined in terms of eigenstate sets of experiments.
We refer to [5] for a more detailed discussion of these topics, including proofs of theorems
and results mentioned in next subsections.

3.1 Eigenstate Sets and Eigenclosure

Let us consider an experiment e and a subset A of the set of outcomes Oe . This defines a
property aA

e which is actual whenever the measurement e yields with certainty an outcome
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in A. By eige(A) we denote the set of states for which the experiment e would yield with
certainty an outcome in A, and call these the eigenstates of property aA

e . Obviously, the set
eige(A) coincides with the Cartan image of the property aA

e : κ(aA
e ) = eige(A) [5]. This iso-

morphism justifies identifying an eigenstate set with its corresponding property. Therefore,
we can study the structure of the set of properties in the state space of the entity. The fol-
lowing trivial properties are defined: the property aOe

e , which is actual in any state, and the
property a∅

e , which is never actual. For the eigenstate map eige : P(Oe) → P(�), the follow-
ing holds: (i) eige(∅) = ∅, (ii) eige(Oe) = �, (iii) ∀Ai ⊂ Oe : eige(

⋂
i Ai) = ⋂

i eige(Ai).
Next, let us consider a set E of experiments. A natural way to ‘combine’ the experiments

of E is the union experiment eE which consists in choosing at random an element of E

and performing that experiment, and attributing the observed outcome to the experiment
eE . The outcome set of the experiment eE is given by OE = ⋃

e∈E Oe . The experiments in
the set E are called primitive experiments and the ‘combination’ experiment eE is called
a union experiment. For a set of outcomes A ⊆ OE the eigenstate set eigE(A) is defined
as the set of states for which E, and therefore every experiment e ∈ E, would yield an
outcome in A with certainty. The eigenstate set of a union experiment is completely defined
by the eigenstate sets of the primitive experiments of which it is constructed [5]: eigE(A) =⋂

e∈E eige(A ∩ Oe) (3.1).
One could even consider the set E containing all primitive experiments to construct a

union experiment eE with the outcome set OE = ⋃
e∈E Oe . Clearly, this outcome set OE

contains all possible experimental outcomes from all primitive and union experiments. Let
us denote the collection of eigenstate sets for the union experiment eE by F E . For any union
experiment E one can show that its collection FE of eigenstate sets is contained in the
collection of eigenstate sets F E of the union experiment eE . Therefore one can study the
structure of the set of properties of the system on the basis of the structure generated by
the elements of F E . The following holds: ∅,� ∈ F E and Fi ∈ F E ,∀i ⇒ ⋂

i Fi ∈ F E . This
defines a closure operation on �, as follows. A closure structure is a couple (�, cl) with � a
set and cl a mapping of P(�) onto itself with the following four properties: (i) K ⊆ cl(K),

(ii) K ⊆ L ⇒ cl(K) ⊆ cl(L), (iii) cl(cl(K)) = cl(K), (iv) cl(∅) = ∅. If (X, cl) is a closure
structure, then a subset F of X is called a closed set iff cl(F ) = F . In the case that the set X

is fixed, we can identify the closure structure (X, cl) by its set of closed sets, i.e. Fcl = {F ∈
P(X) | cl(F ) = F }, and call Fcl the closure structure. This definition of a closure operation
is less restrictive than the usual topological definition, for which also the (set-theoretic)
union of two closed sets has to be closed. This is not necessarily the case for the closure
as we define it here. The following holds: For a closure structure (X, cl), the family F of
closed subsets has the following properties: (i) ∅ ∈ F ,X ∈ F , (ii) Fi ∈ F ⇒ ⋂

i Fi ∈ F . On
the other hand: If a family F of subsets of a set X is such that (i) and (ii) are satisfied, then the
map cl : P(X) → P(X) : K → cl(K) = ⋂

K⊆Fi ,Fi∈F Fi defines a closure structure (X, cl).
Since F E satisfies these conditions, this defines a closure on �. For an entity with state space
�, a set of primitive experiments E and a collection of eigenstate sets FE , the eigenclosure
cleig is defined as the map P(�) → P(�) such that for K ⊆ � : cleig(K) = ⋂

K⊆Fi ,Fi∈FE
Fi .

The physical interpretation of the eigenclosure is as follows. Consider a set of states A, then
cleig(A) is the intersection of all eigenstate sets containing the set A. This corresponds with
the meet of the corresponding properties. It is the smallest possible eigenstate set containing
A which corresponds with the ‘smallest’ possible property which is actual in all states in
set A.

Let us recall that the eigenstate set for a union experiment is given by the intersection of
the eigenstate sets of the experiments in the union (3.1). Therefore the collection

⋃
e∈E Fe

of eigenstate sets of the primitive experiments E is a generating set for the collection FE of
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all eigenstate sets for all experiments of the entity. It is interesting to note that one could
even go a step further, namely for each e ∈ E only a subset of Fe is required to reconstruct
the whole set of eigenclosed sets Fe and hence also F E .

Definition 3.1 (Generating set for a closure structure) Let (X, cl) be a closure structure and
F the set containing all closed subsets with respect to this closure cl. The collection B ⊂ F
is called a generating set for F iff for every F ∈ F there exists a family {Bi} ∈ B such that
F = ⋂

i Bi .

In such case, one can show for every K ⊂ X that cl(K) = ⋂
K⊆Bi ,Bi∈B Bi.

Theorem 3.1 If the axiom of property determination is satisfied, the collection {eige({xi
e}C) |

e ∈ E , xi
e ∈ Oe} is a generating set for F E .

Proof Let F ∈ Fe , i.e. ∃A ⊆ Oe : F = eige(A) = κ(aA
e ). Next, let us consider an outcome

xi
e ∈ AC for the experiment e. Let us denote by {xi

e}C the set Oe\{xi
e}. Then the property

a
{xi

e}C
e is actual in state p iff the corresponding measurement e yields an outcome in Oe\{xi

e}
with certainty. Since AC = ⋃

xi
e∈AC {xi

e} it follows that

A = ACC =
⋂

xi
e∈AC

(Oe\{xi
e}).

Hence

eige(A) = eige

⎛

⎝
⋂

xi
e∈AC

(Oe\{xi
e})

⎞

⎠ =
⋂

xi
e∈AC

eige(Oe\{xi
e}) =

⋂

xi
e∈AC

κ
(
a

{xi
e}C

e

)

= κ

⎛

⎝
∧

xi
e∈AC

a
{xi

e}C
e

⎞

⎠ .

From the axiom of property determination it follows that aA
e = ∧

xi
e∈AC a

{xi
e}C

e . Therefore the

family {a(xi
e)

C

e | xi
e ∈ AC} generates the property aA

e by conjunction, i.e. all eigenstate sets
of primitive experiments e are generated by the eigenstate sets of the ‘primary’ primitive

properties a
(xi

e)
C

e . Since these generate the eigenclosure by means of the construction of

the union experiment eE , it follows that the set of primary primitive properties a
(xi

e)
C

e is a
generating set for the eigenclosure structure FE . �

3.2 Orthogonality Relations and Orthoclosure

Another way to construct a closure operation is by considering an orthogonality relation on
the set of states. Orthogonality relations can be introduced in many ways, using operationally
defined concepts such as the possible measurement outcomes and state transitions due to
measurement. In this section we show how an orthogonality relation on the set of states
generates a closure operation on the set of states by means of the bi-orthogonal construction
following Birkhoff [10, 11].
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An orthogonality relation ⊥: � → � is defined as a relation on the set of states which is
(i) anti-reflexive: �p ∈ � : p ⊥ p and (ii) symmetric: ∀p,q ∈ � : p ⊥ q ⇒ q ⊥ p. The set
orthogonal K⊥ of an arbitrary set of states K ⊂ � is defined as: K⊥ = {p ∈ � | p ⊥ q,∀q ∈
K}. If the set K is a singleton, we can abbreviate the notation {p}⊥ by p⊥. A set K which is
equal to its bi-orthogonal is called an orthoclosed set, i.e. K is orthoclosed iff K = K⊥⊥. It
can be shown that the bi-orthogonal operation indeed defines a closure operation [5], which
justifies using the name orthoclosure. The set of orthoclosed sets is denoted by F⊥.

Next, let us consider the set F⊥. Trivially, it is the set-theoretic union of its elements:
F⊥ = ⋃

p∈F⊥{p}. Following the definition of the orthogonal of a set, the orthogonal of F⊥

is given by the intersection of the corresponding state orthogonals: (F⊥)⊥ = ⋂
p∈F⊥{p}⊥ =

⋂
p∈F⊥ p⊥ such that for an orthoclosed set F holds that: F = F⊥⊥ = ⋂

p∈F⊥ p⊥. This shows
how the set of orthoclosed sets is generated by making intersection(s) of state orthogonals
only.

3.3 Orthocomplementation of Orthoclosure and Eigenclosure

One can verify easily that ⊥ defines an orthocomplementation on the set of orthoclosed
sets. Therefore, if orthoclosure and eigenclosure coincide then the set of properties is or-
thocomplemented under ⊥, which is one of the quantum axioms in the (generalized) Piron
representation theorem. Since an orthoclosed set is generated as an intersection of state or-
thogonals, the orthoclosure is contained within the eigenclosure iff all state orthogonals are
eigenclosed: F⊥ ⊂ Feig iff cleig(p

⊥) = p⊥,∀p ∈ �. On the other hand, the eigenclosure is

generated by primary primitive properties a
{xi

e}C
e , such that a necessary and also sufficient

condition for Feig ⊂ F⊥ is that ∀e ∈ E ,∀xi
e ∈ Oe : κ(a

{xi
e}C

e ) ∈ F⊥, i.e. κ(a
{xi

e}C
e ) is given

by an intersection of state orthogonals. Therefore, if both conditions are satisfied, the set
of eigenclosed sets coincides with the set of orthoclosed sets, and the set of properties is
orthocomplemented under the ⊥ relation.

4 The Symmetric N -Model

4.1 A Macroscopic Model with a Quantum Probability-Compatible Gun

In this and the following section we illustrate our approach by considering (possibly macro-
scopic) sphere models with measurements having more than two outcomes [12, 14]. The
number of possible outcomes is given by a parameter N which also controls the maximal
possible change of state due to measurement. For N = 2 the possible change of state is
maximal and the system reduces to the sphere model for a quantum spin- 1

2 particle. In the
‘classical limit’ N → ∞ the measurement induces no state transition at all and all experi-
ments are deterministic.

The physical entity S that we consider is a point particle P on the Bloch sphere (see
Fig. 1). Hence the set of pure states is given by � = {pv | v ∈ S2}. The set of experiments is
E (N) = {eN

u | u ∈ S2},N : 2 → ∞ with eN
u defined as follows. We consider the point u on

the Poincaré sphere and its antipode −u, and divide the angular interval [θu, θ−u] = [0,π]
by N equidistant angles θk = k π

N−1 , k = 0, . . . ,N −1. The circle Ck is defined as the border
of the spherical cap cap(u, θk) , i.e. Ck = {q ∈ S2 | θ(u, q) = θk} and corresponds with the
set of eigenstates of outcome ok

u = cos( πk
N−1 ), k = 0, . . . ,N − 1. Two consecutive circles

Ck and Ck+1 define a band Bk, k = 0, . . . ,N − 2 : Bk = {v ∈ S2 | θk ≤ θ(u, v) ≤ θk+1}. For
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Fig. 1 The symmetric N -model and the measurement procedure with a ‘quantum probability-compatible
gun’

k = 0 and k = N − 1, the circles Ck reduce to points u and −u on the sphere, respectively.
The result of the measurement eN

u is defined as follows: we consider the great circle C{p,u,−u}
on S2 through the triplet {p,u,−u}. The intersections of C{p,u,−u} with the circles Ck and
Ck+1 are denoted by pk and pk+1 respectively, with orthogonal projections p′

k and p′
k+1 onto

the line segment between u and −u . Let us assume that the initial state p of the entity lies
in the band Bk . By analogy with the ε-model [7], we put an elastic piece along the great
circle C{p,u,−u} on S2 between the points pk and pk+1 and attach the point particle P to this
elastic. The measurement process continues as the elastic breaks randomly at some point,
denoted by pλ. If pλ ∈ (pk+1,p] the elastic breaks and pulls the particle P towards the point
pk , where the point particle stays attached and we assign the outcome ok

u to the experiment
eN
u . If pλ ∈ (p,pk) the point particle is pulled by the piece of elastic towards the point pk+1,

where it stays attached, and we assign the outcome ok+1
u to the experiment eN

u . The event that
the elastic band breaks at exactly the point where the point particle is situated, i.e. pλ = p,
has measure zero, so our choice for the measurement procedure in this case does not affect
the overall probabilities of the model.

In a sense, for the discussion of orthocomplementation of the set of properties only the
set of eigenstates is relevant and the probability distributions over non-eigenstates is only
of secondary importance. Nevertheless, we can always choose a procedure of ‘breaking the
elastic’ which fits the N -model with the quantum sphere model for N = 2. For instance,
one way of breaking the elastic in a suitable way is by considering a ‘quantum probability-
compatible gun’ moving in the interval [−u,u] and shooting bullets straight at the circle
segment C{p,pk,pk+1}. If the gun fires when it is at a point p′

λ ∈ [p′
k,p

′
k+1], the elastic breaks

at the corresponding point pλ between pk and pk+1. If the probability that the gun fires
at point p′

λ is uniformly distributed over the interval [p′
k,p

′
k+1], the resulting probability

distribution over the set of outcomes coincides with the quantum probability distribution
for N = 2. Indeed, denoting the probability to obtain the outcome ok

u if the system is in a
state p as P (ok

u | p), one obtains that if N = 2 the probabilities are given by P (o0
u | p) =

cos θ(u,p)+1
2 = cos2(

θ(u,p)

2 ) and P (o1
u | p) = 1−cos θ(u,p)

2 = sin2(
θ(u,p)

2 ) which are the transition
probabilities for a spin measurement on a quantum spin- 1

2 particle [4, 7]. See Fig. 2 for
N = 5 and N = 6.
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Fig. 2 The symmetric N -model for N = 5 and N = 6

4.2 Eigenclosure and Aerts Orthoclosure of the N -Model

Two states p and q are called Aerts orthogonal [1, 5] iff there exists a measurement e ∈ E
such that p and q are eigenstates of mutually exclusive outcome sets: p ⊥A q ⇔ ∃e ∈
E ,A,B ⊂ Oe,A ∩ B = ∅ : p ∈ eige(A), q ∈ eige(B). Hence for the N -model, a necessary
condition for two states to be Aerts orthogonal is that they are separated by an angular dis-
tance at least as large as the smallest superposition angle, i.e. the smallest angle between
two consecutive (non intersecting) eigenstate sets. For the symmetric N -model, these super-
position angles are independent of k, since 	θk = π

N−1 . Hence, denoting the angle between
the states p and q by θ(p, q) the necessary condition for p⊥Aq is that θ(p, q) ≥ π

N−1 .
Conversely, this necessary condition is also sufficient. Let us consider states p and q such
that θ(p, q) ≥ π

N−1 . It suffices to consider the experiment eN
p for which p ∈ eig(o0

u = 1)

while q ∈ eig({o0
u}C), which shows that states p and q are Aerts orthogonal. To summarize,

denoting θN,⊥A
= π

N−1 then p ⊥A q ⇔ θ(p, q) ≥ θN,⊥A
.

On the other hand, the eigenclosure structure of the N -model is generated by eigen-
state sets eigeN

u
({oi

u}C), i = 0, . . . ,N − 1. Clearly, p⊥A = {q ∈ � | θ(p, q) ≥ θN,⊥A
} =

eigeN
p
({o0

p}C) and therefore F⊥A
⊂ Feig. Also, eigeN

u
({oi

u}C) = ⋂
q∈Ci

eigeN
q
({o0

q}C) =
⋂

q∈Ci
q⊥A and hence Feig ⊂ F⊥A

. This shows that the Aerts orthoclosure structure coin-
cides with the eigenclosure structure. Since an orthoclosure structure is orthocomplemented
it follows automatically that also the lattice L of properties is orthocomplemented.

4.3 Failing Quantum Axioms for the Symmetric N -Model

The axioms of weak modularity and the covering law hold in the quantum case (N = 2)
and the classical limit (N → ∞). However, very similar as in the intermediate situations
of the epsilon model [7, 14], these quantum axioms are violated in the intermediate cases
(2 �= N �= ∞) of the symmetric N -model.

4.3.1 Weak Modularity

Recall that p ⊥A q ⇔ θ(p, q) ≥ θN,⊥A
= π

N−1 . Since L is orthocomplemented, each
property can be obtained by taking meet of state property orthogonals s(p)⊥A such that
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κ(s(p)⊥A) = cap(−p, N−2
N−1π). Let us choose the property a such that κ(a) = cap(p, θ1)

with N−3
N−1π < θ1 < N−2

N−1π , which is always possible for N /∈ {2,∞}. Property b is cho-
sen such that κ(b) = cap(p, N−2

N−1π). Clearly a < b and a �= b, such that if the axiom of
weak modularity is fulfilled, there should exist a property c ∈ L orthogonal to a such that
b = a ∨ c, to be more specific c = a⊥A ∧ b. Since c < a⊥A , any state q ∈ κ(c) lies in
a spherical cap cap(−p,π − π

N−1 − θ1) = ⋂
r∈cap(p,θ1) cap(−r, N−2

N−1π). Hence θ(p, q) >

π − (N−2
N−1 π − θ1) = π

N−1 + θ1 > N−2
N−1π such that q /∈ cap(p, N−2

N−1π) = κ(b), which shows
that it is impossible that κ(c) ⊂ κ(b) and therefore c ≮ b. Hence the axiom of weak modu-
larity does not hold.

4.3.2 Covering Law

Next, let us consider the property a such that κ(a) = cap(q, N−2
N−1π − δ) with δ such that

0 < δ < π
N−1 . Let p be a state such that θ(p, q) = N−2

N−1π + δ. Because the angle between p

and q is greater than N−2
N−1π , the only property of which the Cartan image contains κ(a) and

κ(s(p)) is the maximal property 1 (with κ(1) = �), which shows that a ∨ s(p) = 1. Next,
take b such that κ(b) = cap(q, N−2

N−1π). Then a < b < a ∨ s(p) but neither a = b nor b =
a ∨ s(p), which shows that the covering law does not hold.

5 The Asymmetric N -Model

5.1 A Macroscopic Model with Context Dependent Transition Probability

In this section we consider an asymmetric N -model in which again a parameter N controls
the maximal change of state due to measurement, but with a different eigenclosure structure
and different probability structure. The state of the entity is represented by a point p on the
surface of the Poincaré sphere S2. To define the experiment eN

u we proceed as follows. We
consider the point u on the Poincaré sphere and its antipode −u, and divide the [u,−u]-
axis into N intervals of equal length, Ik = [1 − 2(k+1)

N−1 ,1 − 2k
N−1 ], k = 0, . . . ,N − 2. The

border points of the interval Ik are denoted by ik and ik+1, such that ik = 1 − 2k
N−1 and Ik =

[ik+1, ik], k = 0, . . . ,N − 2. The angle θk is defined by cos θk = ik = 1 − 2k
N−1 . The circle Ck

is defined as the border of the spherical cap cap(u, θk), i.e. Ck = {q ∈ S2 | θ(u, q) = θk} and
corresponds with the set of eigenstates of outcome ok

u = cos θk = 1− 2k
N−1 , k = 0, . . . ,N −1.

Two consecutive circles Ck and Ck+1 define a band Bk, k = 0, . . . ,N − 2 : Bk = {v ∈ S2 |
θk ≤ θ(u, v) ≤ θk+1}. The result of the measurement eN

u is defined as follows: we consider
the great circle C{p,u,−u} on S2 through the triplet {p,u,−u}. The intersections of C{p,u,−u}
with the circles Ck and Ck+1 are denoted by pk and pk+1, respectively. Let us assume that
the initial state of the entity is in a band Bk . The interval [ik+1, ik] is divided into three
pieces, by an interval Ik,sup of length 2

(N−1)2 centered around mk = ik+1+ik
2 , i.e. the middle

of the interval Ik . Similarly to the symmetric N -model, we put an elastic piece along the
great circle C{p,u,−u} on S2 between the points pk and pk+1 and attach the point particle P

to this elastic. The measurement process continues as the elastic breaks randomly at some
point, denoted by pλ. If pλ ∈ (pk+1,p] the elastic breaks and pulls the particle P towards
the point pk where the point particle stays attached and we assign the outcome ok

u to the
experiment eN

u . If pλ ∈ (p,pk) the point particle is pulled by the piece of elastic towards
the point pk+1, where it stays attached, and we assign the outcome ok+1

u to the experiment
eN
u . Again, the event that the elastic band breaks at exactly the point where the point particle
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Fig. 3 The asymmetric N -model for N = 5 and N = 6, the eigenstate sets of the respective outcomes are
represented by spherical sectors coloured in gray

is situated, i.e. pλ = p, has measure zero, so our choice for the measurement procedure in
this case does not affect the overall probabilities of our model. We choose a procedure of
‘breaking the elastic’ as follows. The quantum probability-compatible gun shoots bullets
straight at the circle segment C{p,pk,pk+1}, but is restricted to the interval Ik,sup. Moreover,
it is defined such that the probability that the gun fires at point p′

λ is uniformly distributed
over the interval Ik,sup. If the gun fires when it is at point p′

λ ∈ [p′
k,p

′
k+1], the elastic breaks

at the corresponding point pλ between pk and pk+1. To conclude, there are three cases:
(i) p′ ∈ Ik,up = [1 − 2k

N−1 − N−2
(N−1)2 ,1 − 2k

N−1 ] and the elastic pulls the point particle towards

pk , where it stays attached and the measurement eN
u yields the outcome ok

u = 1 − 2k
N−1 with

certainty; (ii) p′ ∈ Ik,down = [1 − 2(k+1)

N−1 ,1 − 2(k+1)

N−1 + N−2
(N−1)2 ] and the elastic pulls the point

particle towards pk+1, where it stays attached and the measurement eN
u yields the outcome

ok+1
u = 1− 2(k+1)

N−1 with certainty; or (iii) p′ ∈ Ik,sup =]1− 2(k+1)

N−1 + N−2
(N−1)2 ,1− 2k

N−1 − N−2
(N−1)2 [

we consider a random variable λ in the interval Ik,sup by employing the quantum probability-
compatible gun. If λ ≤ p′ the measurement induces a state transition from p to pk and the
experiment yields the outcome ok

u = 1 − 2k
N−1 ; if λ > p′ the measurement induces a state

transition from p to pk+1 and the experiment yields the outcome ok+1
u = 1 − 2(k+1)

N−1 . See
Fig. 3 for N = 5 and N = 6.

For N = 2 the probability distribution over the set of outcomes coincides with the quan-
tum probability distribution, i.e. the transition probabilities for a spin measurement on a
quantum spin- 1

2 particle. In the limit N → ∞ the system has a classical structure, i.e. its set
of properties is a Boolean lattice. The orthogonal of a state p is given by the set-theoretic
complement {p}C, and the eigenstate set of property eigeN→∞

p
({o0

p}C) is {p}C . Therefore the
eigenclosure coincides with the identity map such that each subset F ⊂ � corresponds to
an eigenclosed set. Hence the set of properties is isomorphic with P(�) and it is not diffi-
cult to see that this is indeed a Boolean (i.e. distributive) lattice. In the classical limit each
measurement can be regarded as an observation only such that the state transition due to
measurement is zero.

One of the features of this model is that the transition probability between states p and
q not only depends on the two states involved, but also on the specific measurement used to
induce this state transition. Let θN,⊥D

be defined as follows:

(i) for even N : θN,⊥D
= arcsin( 1

N−1 ) + arcsin( 1
(N−1)2 )
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Fig. 4 The ‘largest’ non-trivial
eigenstate set for an experiment
eN
u , namely eig

eN
u

({o0
u}C), which

is the spherical cap
cap(−u,π − θeig) with

cos θeig = 1 − N

(N−1)2

(ii) for odd N : θN,⊥D
= arcsin( N

(N−1)2 )

then if one considers p and q such that θ(p, q) = θN,⊥D
it is possible to show there exists

at least one experiment eN
v with q as a possible final state but which does not induce a state

transition from p to q , so PeN
v
(p | q) = 0 (in fact, this also allows to define an orthogonality

relation in terms of state transitions instead of eigenstates [12–14]). Now, let us consider the
experiment eN

p . Then one can check that PeN
p
(p | q) �= 0, showing that the state transition

probability indeed depends on the measurement context which induces it. However, since
the focus of the present paper lies on the quantum axiom of orthocomplementation, we will
not go deeper into this issue here.

5.2 Eigenclosure and Aerts Orthoclosure of the Asymmetric N -Model

Similarly as for the symmetric N -model, one can show that states p and q are Aerts orthog-
onal iff they are separated by an angle greater than the smallest superposition angle. These
superposition angles can be explicitly calculated as a function of k, the index of the superpo-
sition zone. We find that the minimal superposition angle is obtained for k = N

2 for even N,

and k = N−1
2 for odd N . Denoting the smallest superposition angle as θN,⊥A

, we obtain for
even N : θN,⊥A

= 2 arcsin( 1
(N−1)2 ) and for odd N : θN,⊥A

= arcsin( N

(N−1)2 ) − arcsin( N−2
(N−1)2 ).

Hence two states p and q are Aerts orthogonal iff θ(p, q) ≥ θN,⊥A
[12].

The ‘largest’ non-trivial eigenstate set for an experiment eN
u is given by eigeN

u
({o0

u}C).

This is a spherical cap cap(−u,π − θeig) with θeig given by cos θeig = 1− N

(N−1)2 (see Fig. 4).

For 2 �= N �= ∞ one finds that θeig > θN,⊥A
, which means that the state orthogonals p⊥A

are not contained in a non-trivial eigenstate set, i.e. p⊥A is not eigenclosed. Since for an
orthoclosure structure the state orthogonals generate the orthoclosed sets by intersection,
i.e. F ∈ F⊥ ⇔ F = ⋂

q∈F⊥ q⊥, it follows immediately that the inclusion F⊥A
⊆ Feig cannot

hold. The possibility of the reversed inclusion Feig ⊆ F⊥ is discussed in next subsection.

5.3 Problem of Orthocomplementation on the Set of Properties

Let us show under which conditions it is possible to define an orthogonality relation ⊥N

on the set of states of the asymmetric N -model such that Feig = F⊥N
, i.e. such that the set

of eigenstate sets is orthocomplemented via this orthogonality relation. Let us assume first
that the orthogonality relation ⊥N depends on the angle between the states only, i.e. there
exists θ⊥N

such that p ⊥N q ⇔ θ(p, q) ≥ θ⊥N
. Let us formulate the necessary and sufficient
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conditions on θ⊥N
such that Feig = F⊥N

and sketch briefly some of the proofs to obtain the
main results.

Theorem 5.1 F⊥N
⊆ Feig iff θ⊥N

≥ θeig.

Proof For F⊥N
⊆ Feig to hold, it is necessary and sufficient that each state orthogonal is

eigenclosed. Since a state orthogonal is given by cap(−p,π − θ⊥N
) the opening angle of

the largest non-trivial eigenstate set (i.e. eigeN
p
({o0

p}C)) should be at least as large as π −
θ⊥N

. Since eigeN
p
({o0

p}C) = cap(−p,π − θeig) it is necessary that θ⊥N
≥ θeig. This is also a

sufficient condition: if θ⊥N
≥ θeig then each state orthogonal can be written as an intersection

of eigenstate sets. This can be seen by considering the complement of the state orthogonal,
i.e. (p⊥N )C . This is an open spherical cap cap◦(p, θ⊥N

). Since θ⊥N
≥ θeig this set can be

covered by open caps cap◦(q, θeig) such that cap◦(p, θ⊥N
) = ⋃

q∈Q cap◦(q, θeig) for some
suitable set Q. Therefore,

p⊥N = (
(p⊥N )C

)C = (cap◦(p, θ⊥N
))C =

⎛

⎝
⋃

Q

cap◦(q, θeig)

⎞

⎠

C

=
⋂

Q

cap◦(q, θeig)
C =

⋂

Q

cap(−q,π − θeig) =
⋂

Q

eigeN
q

({o0
q}C

)

which shows that p⊥N is eigenclosed. �

For N > 2, let us define θm as the smallest angular distance between the eigenstate sets
eigeN

u
({ol

u | l = 0, . . . , k − 1}) and eigeN
u
({ol

u | l = k + 1, . . . ,N − 1}). It can be shown that
θm is given by:

θm(N odd) = 2 arcsin

(
N

(N − 1)2

)

, (1)

θm(N even) = arcsin

(
1

(N − 1)2

)

+ arcsin

(
2N − 1

(N − 1)2

)

. (2)

The following theorem holds, and is illustrated on Fig. 5:

Theorem 5.2 Feig ⊆ F⊥N
iff θ⊥N

≤ θm

2 and θ⊥N
≤ θeig.

Proof If Feig ⊆ F⊥N
then necessarily each eigenstate set can be written as an intersection

of state orthogonals. More concretely, it is necessary and sufficient that the eigenstate sets
eige(Oe\{1 − 2k

N−1 }), k = 0, . . . ,N − 1 are orthoclosed, since they generate the lattice of
properties Feig. Considering that the eigenstate set eige(Oe\{1}) should be contained within
a state orthogonal, one obtains immediately as necessary condition θ⊥N

≤ θeig. Next, fol-
lowing the same procedure as in the proof of the previous theorem, we can show that the
set eige(Oe\{1 − 2k

N−1 }), k = 1, . . . ,N − 1 is orthoclosed iff θ⊥N
≤ θm

2 . Indeed, in such a
case the set-theoretic complement of eige(Oe\{1 − 2k

N−1 }) can be written as a union of open
spherical caps cap◦(q, θ⊥N

):

(

eige

(

Oe

∖{

1 − 2k

N − 1

}))C

=
⋃

Q

cap◦(q, θ⊥N
).
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Fig. 5 Problem of
orthocomplementation on the set
of properties L: Illustration why
θ⊥N

≤ θm
2 is necessary for

Feig ⊆ F⊥N

Taking the set-theoretic complement a second time, we obtain:

eige

(

Oe

∖{

1 − 2k

N − 1

})

=
⋂

Q

cap(−q,π − θ⊥N
)

which means that eige(Oe\{1 − 2k
N−1 }) is orthoclosed. This procedure can be repeated for all

values of k, from which the necessary condition follows: θ⊥N
≤ θm

2 . Following a similar rea-
soning one can show that θ⊥N

≤ θm

2 is also a sufficient condition for eige(Oe\{1− 2k
N−1 }), k =

1, . . . ,N − 1 to be orthoclosed. �

Combining Theorems (5.1) and (5.2), the necessary and sufficient condition on θ⊥N
to

obtain Feig = F⊥N
is given by:

Theorem 5.3 Feig = F⊥N
iff θ⊥N

= θeig and θ⊥N
≤ θm

2 .

Using expressions (1) and (2) for θm, one can check whether θeig ≤ θm

2 —i.e. Feig =
F⊥N

—is possible at all. It turns out that for all finite values of N > 2 the inequality
θeig ≤ θm

2 is violated. This shows that there cannot exist an orthogonality relation ⊥N such
that Feig = F⊥N

.
Due to Theorem (5.3), for N > 2 the asymmetric N -model has no orthocomplementation

on the set of properties which can be defined by means of an orthogonality relation on the
set of states, i.e. which is characterized by an orthogonality angle θ⊥ such that p ⊥ q ⇔
θ(p, q) ≥ θ⊥.

Of course, one could still imagine other ‘non-standard’ procedures of defining an or-
thocomplementation on the set of properties, i.e. without making use of the bi-orthogonal
construction. Let us assume for a moment that the N -model for N > 2 would allow an
orthocomplementation, denoted by ′. One can show that the properties are generated by tak-
ing meets of (property) state orthocomplements, as follows. First, the set of states of the
N -model is atomistic, such that each property a can be written as the join of its property
states: a = ∨

sp<a sp . Also, κ(sp) = {p}. Hence one can abbreviate the previous expression
as a = ∨

p<a p. Then analogously a′ = ∨
p<a′ p, such that, using De Morgan laws, one has

a = a′′ = (
∨

p<a′ p)′ = ∧
p<a′ p′, which shows that the properties are generated by taking

meets of (property) state orthocomplements (similar as the orthoclosure is generated by state
orthogonals). On the other hand, the eigenclosure structure of the asymmetric N -model is
generated by the eigenstate sets eige(Oe\{1 − 2k

N−1 }) , which—as we have seen—do not
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have a single family of generators, e.g., the eigenstate set eige(Oe\{1 − 2k
N−1 }), k = N

2 (or
k = N−1

2 for odd N ) cannot be generated by making intersections of eigenstate sets of the
form eige(Oe\{1}) and vice versa. This means that for N > 2 there exist at least two ‘in-
compatible’ generating subsets for its eigenclosure structure. Therefore it is impossible to
recover the eigenclosure structure via an orthocomplemented structure which is generated
by the single family of generators {κ(p′) | p ∈ �}.

6 Conclusions

We have presented a model in which the change of state of the system induced by interac-
tion with the measurement context is controlled by a parameter N reflecting the number of
outcomes. In the case N = 2 the system reduces to a model for the spin measurements on a
quantum spin-1/2 particle. In the limit N → ∞ the system has a classical structure, i.e. ex-
periments are deterministic and the set of properties is represented by a Boolean lattice. For
intermediate values of the parameter, the change of state under measurement is neither max-
imal (i.e. quantum) nor zero (i.e. classical), and the system does not fit within a quantum
Hilbert space nor a classical phase space description. To deal with these issues in a rigorous
mathematical way, we have constructed the SPS of these models for different values of the
contextuality parameter N and studied the problem of orthocomplementation on the set of
properties. We have presented an asymmetric version of the sphere model for which it is
even impossible for N > 2 to define an orthocomplementation on the set of properties via
an orthogonality relation on the set of states. There exist at least two ‘incompatible’ gen-
erating subsets for the eigenclosure structure of the asymmetric N -model. Therefore it is
impossible to recover the eigenclosure structure via an orthocomplemented structure which
is generated by a single family of generators {κ(p′) | p ∈ �}.

Another interesting feature for the intermediate situations of the asymmetric N -model
(not discussed in full detail in this paper), is that the probability of a state transition in
general depends not only on the (angular distance between the) two states but also on the
measurement context which induces the state transition. In the axiomatic foundations of
quantum theory, the theorem of Gleason dictates the uniqueness of the transition probability
function between two states in Hilbert space [16]. Moreover, this probability function only
depends on (the angle in Hilbert space between) the initial and the final state. Therefore
Gleason’s theorem does not apply to the asymmetric N -model, implying that the probabil-
ity distribution over the set of outcomes cannot be derived from the structure of the set of
properties in the same way as for quantum entities. In this sense our model also sheds new
light on Gleason’s theorem and suggests that transition probability should not be treated as
a secondary concept which can be derived from other ‘more basic’ concepts such as states
and properties as in Gleason’s theorem, but instead should be regarded as a primitive con-
cept by its own right. In this sense this macroscopic model should not only be considered as
a mathematical exploration of possible generalizations of quantum mechanics an sich, but
also as a further elaboration along the lines of the physical motivations of the original hid-
den measurement model given by Aerts, which aimed to provide a possible explanation for
the probabilities of quantum mechanics. The current model allows to explore the (possible)
link between the axiom of orthocomplementation and the measurement (in)dependence of
the quantum probability distribution, in a similar way as Gisin showed how to derive the
Hilbert space structure of quantum mechanics from assuming the uniqueness of the quan-
tum probability function [15]. In a forthcoming paper, we intend to address these issues by
constructing the State Context Property System for the N -models, in which measurement
context is explicitly taken into account.
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